175 research outputs found

    Analysis of Opportunities and Challenges for R&D Management and the Role of the R&D Society for its Improvement – A Case Study in Iran

    Get PDF
    Research and Development (R&D) management in Iran is faced to many barriers and obstacles, in which R&D units are considered as the basic core of the product development and innovation. Due to structural shortcomings, a great number of organizations and industries have not been able to find their actual status. There are about different 1141 R&D units with a dispersion pattern in Iran. This paper considers and analyzes the R&D case study in one of the provinces located in the north part of Iran in order to enhance the potential R&D activities in respect with the industrialized areas and zones. In this province, there are about 2504 industrial units of which there are only 44 R&D units certified by the state government. However, there are limit numbers of these R&D units that are extensively active. This paper also addresses the current status in respect with the R&D activities to find out why there is a lack and depression of these activities in the industrial units. By considering the opportunity and challenges of these R&D units, there is a need to change these units to be active in order to quickly respond the market and demand requirements. Finally, a few alternative solutions and improvement plans are proposed, in which the Iranian R&D Society is responsible for supporting and succeeding these action plans towards the organization goals.R&D Management

    Fuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem

    Get PDF
    This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and flexibility and delivery performance, must be considered to determine suitable suppliers. The aim of this study is to present a new approach using particle swarm optimization (PSO) algorithm for clustering suppliers under fuzzy environments and classifying smaller groups with similar characteristics. Our numerical analysis indicates that the proposed PSO improves the performance of the fuzzy c-means (FCM) algorithm

    A new approach for cell formation and scheduling with assembly operations and product structure

    Get PDF
    In this paper, a new formulation model for cellular manufacturing system (CMS) design problem is proposed. The proposed model of this paper considers assembly operations and product structure so that it includes the scheduling problem with the formation of manufacturing cells, simultaneously. Since the proposed model is nonlinear, a linearization method is applied to gain optimal solution when the model is solved using direct implementation of mixed integer programming. A new genetic algorithm (GA) is also proposed to solve the resulted model for large-scale problems. We examine the performance of the proposed method using the direct implementation and the proposed GA method. The results indicate that the proposed GA approach could provide efficient assembly and product structure for real-world size problems

    Two Efficient Meta-Heuristic Algorithms for the Robust Inventory Routing Problem with Backhaul

    Get PDF
    The inventory routing problem (IRP) involves the integration and coordination of two components of the logistics value chain: inventory management and vehicle routing. Therefore, consideration of this issue can be effective in decision making of the organization and will lead to lower costs or other goals. Our objective in this article is to examine a new inventory-routing model and solve it with meta-heuristic methods. For more flexibility of the model, and approaching the real world, the model of this article is considered multi-period and multi-product. Also, two objective functions, including minimizing system costs and transportation risk, are included in this model. Given that the main parameter of the model, that is, demand, is uncertain, we have used a robust optimization approach to solve it, and since this model is in the classification of NP-Hard problems, we have used two meta-heuristic algorithms consisting of non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective imperialist competitive algorithm (MOICA). By examining the model in two deterministic and robust conditions, according to two criteria, the mean values of the objective function and its standard deviation, it has been determined that in almost all cases, the robust optimization model produces better solutions. Also, between the two meta-heuristics method, the NSGA-II algorithm has shown better quality according to the mentioned criteria. Obviously, taking into account the different features of a model increases its efficiency. But this, obviously, makes the model even more complex. However, this complexity of models can work like a real system. Our attention in this article has been to this subject. To analyze such models, exact methods do not have the required performance and paying attention to heuristic and meta-heuristic methods is very effective. In this paper, a robust optimization and meta-heurictic approaches focus on these goals

    Developing a hybrid data mining approach based on multi-objective particle swarm optimization for solving a traveling salesman problem

    Get PDF
    A traveling salesman problem (TSP) is an NP-hard optimization problem. So it is necessary to use intelligent and heuristic methods to solve such a hard problem in a less computational time. This paper proposes a novel hybrid approach, which is a data mining (DM) based on multi-objective particle swarm optimization (MOPSO), called intelligent MOPSO (IMOPSO). The first step of the proposed IMOPSO is to find efficient solutions by applying the MOPSO approach. Then, the GRI (Generalized Rule Induction) algorithm, which is a powerful association rule mining, is used for extracting rules from efficient solutions of the MOPSO approach. Afterwards, the extracted rules are applied to improve solutions of the MOPSO for large-sized problems. Our proposed approach (IMOPSP) conforms to a standard data mining framework is called CRISP-DM and is performed on five standard problems with bi-objectives. The associated results of this approach are compared with the results obtained by the MOPSO approach. The results show the superiority of the proposed IMOPSO to obtain more and better solutions in comparison to the MOPSO approach

    A Stochastic Optimization Approach to a Location-Allocation Problem of Organ Transplant Centers

    Get PDF
    Decision-making concerning thelocation of critical resource on the geographical network is important in many industries.In the healthcare system,these decisions include location of emergency and preventive care. The decisions of location play a crucial role due to determining the travel time between supply and de//////mand points and response time in emergencies.Organs are considered as highly perishable products,whosevarietyof each product has a specific perish time. Despite the importance of this field,only a small proportion of healthcare sector is dedicated to this field. Matching and finding the best recipient for a donated organ is one of the major problems in this field, which is also crucial for the overall organ transplantation process.Balancing the demand and supply in a transplant organ supply chain in order to decrease the waiting list needs certain scheduling and management.The main contribution of this paper consists of considering recipient regionsas another component of the supply chain;in addition,importance of transportation time and waiting lists hasled us to consider a bi-objective model. In addition, uncertainty of input data has led us to consider a stochastic approach

    A simulated annealing algorithm to determine a group layout and production plan in a dynamic cellular manufacturing system

    Get PDF
    In this paper, a mixed-integer linearized programming (MINLP) model is presented to design a group layout (GL) of a cellular manufacturing system (CMS) in a dynamic environment with considering production planning (PP) decisions. This model incorporates with an extensive coverage of important manufacturing features used in the design of CMSs. There are also some features that make the presented model different from the previous studies. These include: 1) the variable number of cells, 2) machine depot keeping idle machines, and 3) integration of cell formation (CF), GL and PP decisions in a dynamic environment. The objective is to minimize the total costs (i.e., costs of intra-cell and inter-cell material handling, machine relocation, machine purchase, machine overhead, machine processing, forming cells, outsourcing and inventory holding). Two numerical examples are solved by the GAMS software to illustrate the results obtained by the incorporated features. Since the problem is NP-hard, an efficient simulated annealing (SA) algorithm is developed to solve the presented model. It is then tested using several test problems with different sizes and settings to verify the computational efficiency of the developed algorithm in compare to the GAMS software. The obtained results show that the quality of the solutions obtained by SA is entirely satisfactory in compare to GAMS software based on the objective value and computational time, especially for large-sized problems

    An Improved Artificial Intelligence Based on Gray Wolf Optimization and Cultural Algorithm to Predict Demand for Dairy Products: A Case Study

    Get PDF
    This paper provides an integrated framework based on statistical tests, time series neural network and improved multi-layer perceptron neural network (MLP) with novel meta-heuristic algorithms in order to obtain best prediction of dairy product demand (DPD) in Iran. At first, a series of economic and social indicators that seemed to be effective in the demand for dairy products is identified. Then, the ineffective indices are eliminated by using Pearson correlation coefficient, and statistically significant variables are determined. Then, MLP is improved with the help of novel meta-heuristic algorithms such as gray wolf optimization and cultural algorithm. The designed hybrid method is used to predict the DPD in Iran by using data from 2013 to 2017. The results show that the MLP offers 71.9% of the coefficient of determination, which is better compared to the other two methods if no improvement is achieved

    Scheduling trucks in cross docking systems with temporary storage and dock repeat truck holding pattern using GRASP method

    Get PDF
    Cross docking play an important role in management of supply chains where items delivered to a warehouse by inbound trucks are directly sorted out, reorganized based on customer demands, routed and loaded into outbound trucks for delivery to customers without virtually keeping them at the warehouse. If any item is held in storage, it is usually for a short time, which is normally less than 24 hours. The proposed model of this paper considers a special case of cross docking where there is temporary storage and uses GRASP technique to solve the resulted problem for some realistic test problems. In our method, we first use some heuristics as initial solutions and then improve the final solution using GRASP method. The preliminary test results indicate that the GRASP method performs better than alternative solution strategies
    corecore